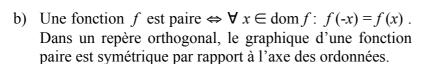
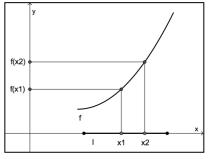
MATHÉMATIQUE (6h)

Corrigé du test n°2 : généralités sur les fonctions

- 1. Sommet de la parabole : S(4,2) . On a donc : $f(x) = a \cdot (x-4)^2 + 2$. Comme le point P(-2,-1) appartient au graphique, on a : $-1 = a \cdot (-2-4)^2 + 2 \rightarrow -1 = 36a + 2 \rightarrow a = -\frac{1}{12}$. Finalement : $f(x) = -\frac{1}{12} \cdot (x-4)^2 + 2$.
- 2. ① $f(x) = -\frac{1}{x+2} 1$ (fonction de référence : $y = \frac{1}{x}$; multiplication des ordonnées par (-1); translations de 2 vers la gauche et de 1 vers le bas).
 - ② $f(x) = 3 \cdot \sqrt{x-1} 4$ (fonction de référence : $y = \sqrt{x}$; multiplication des ordonnées par 3 ; translations de 1 vers la droite et de 4 vers le bas).
 - ③ $f(x) = -4 \cdot |x 3| + 2$ (fonction de référence : y = |x|; multiplication des ordonn. par (-4); translations de 3 vers la droite et de 2 vers le haut).
- 3. Définitions.
 - a) Une fonction f est strictement croissante dans un intervalle I si et seulement si quels que soient les réels x_1 et x_2 dans I, si $x_2 > x_1$, alors $f(x_2) > f(x_1)$.

Voir schéma ci-contre.





- c) Une racine d'une fonction réelle f est un réel dont l'image par f vaut 0. D'un point de vue graphique, une racine de f est l'abscisse d'un point d'intersection du graphique de f avec l'axe des abscisses.
- 4. Soit la fonction f définie par $f(x) = 2x^3 18x$.
 - a) $f(-x) = 2(-x)^3 18(-x) = -2x^3 + 18x = -f(x)$; la fonction est donc impaire.
 - b) $f(x) = 2x^3 18x = 0 \Leftrightarrow 2x \cdot (x^2 9) = 0 \Leftrightarrow (x = 0) \lor (x = -3) \lor (x = 3)$; les racines de f sont -3, 0 et 3.
 - c) $f(-2) = 2(-2)^3 18 \cdot (-2) = -16 + 36 = 20$; le point (-2,20) appartient au graphique de f.
- 5. dom $f = [-1,1] \cup]2,+\infty[$. Les abscisses x des points du graphique sont telles que $-1 \le x \le 1$ ou x > 2.

- 6. Déterminez le domaine de définition de chacune des fonctions suivantes.
 - a) $f(x) = \frac{\sqrt{4-x}}{x-2}$; CE: $4-x \ge 0 \Leftrightarrow x \le 4$ et $x \ne 2$; dom $f =]-\infty,4] \setminus \{2\}$.
 - b) $f(x) = \sqrt{\frac{x-3}{x-7}}$; CE: $\frac{x-3}{x-7} \ge 0$ (voir tableau); dom $f =]-\infty,3] \cup]7,+\infty[$.

X		3		7	
x - 3	-	0	+	+	+
x - 7	-	-	-	0	+
(x-3)/(x-7)	+	0	-	X	+

- c) $f(x) = \frac{x+1}{x^2 7x + 10}$; CE: $x^2 7x + 10 \neq 0 \Leftrightarrow (x \neq 2) \land (x \neq 5)$; $R \setminus \{2,5\}$
- 7. On donne la fonction f définie par $f(x) = \frac{3x + b}{ax 2}$
 - a) Si l'ordonnée à l'origine vaut 5, on a : $f(0) = \frac{b}{-2} = 5 \rightarrow b = -10$.
 - b) Si f n'est pas définie en x = 4, c'est que son dénominateur s'annule pour en 4:

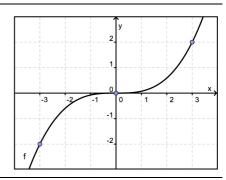
$$a \cdot 4 - 2 = 0 \rightarrow 4a = 2 \rightarrow a = \frac{1}{2}$$
.

La fonction était : $f(x) = \frac{3x-10}{\frac{1}{2}x-2}$

8. Pour que le domaine soit $[5,+\infty[\ \ \]]$, il faut comme conditions d'existence $x \ge 5$ (penser à $\sqrt{x-5}$) et $x \ne 10$ (penser à un dénominateur qui s'annule seulement pour x = 10).

Voici une fonction qui répond à ces conditions : $f(x) = \frac{\sqrt{x-5}}{x-10}$

9. Il faut dessiner une fonction symétrique par rapport à l'origine des axes, et comprenant les points (3,2) et (-3,-2).



10. On a: $f(x) = \frac{2x+5}{x-1} = \frac{2 \cdot (x-1) + 7}{x-1} = 2 + \frac{7}{x-1}$.

Pour obtenir le graphique de f, il faut multiplier par 7 les ordonnées de la fonction y = 1/x, puis translater de 1 unité vers la droite et de 2 unités vers le haut.

11. Si f(x) = 7x + 1 et $g(x) = 2x^2$, alors $(f \circ g)(x) = f[g(x)] = f(2x^2) = 7 \cdot (2x^2) + 1 = 14x^2 + 1$.