Étudier complètement la fonction $f(x) = \frac{4x^2}{x^2 + 1}$ et réaliser une représentation graphique.

1. Domaine de définition : $dom \ f = R \ car \ \forall \ x \in R : x^2 + 1 \neq 0$.

2. Limites et asymptotes

- a) Étant donné que dom f = R, il n'y a pas d'asymptote verticale.
- b) Afin de déterminer s'il y a une asymptote horizontale, cherchons la limite de f en $\pm \infty$.

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{4x^2}{x^2 + 1} = \lim_{x \to \pm \infty} \frac{4x^2}{x^2} = 4$$

Le graphique de f possède une asymptote horizontale : AH = y = 4.

- c) Il n'y a pas d'asymptote oblique car il y a déjà une asymptote horizontale. En effet, une fonction rationnelle ne peut avoir simultanément une asymptote horizontale et une asymptote oblique.
- 3. Dérivée première et variations de f

$$f'(x) = \frac{\left(4x^2\right)' \cdot \left(x^2 + 1\right) - \left(4x^2\right) \cdot \left(x^2 + 1\right)'}{\left(x^2 + 1\right)^2} = \frac{8x \cdot \left(x^2 + 1\right) - 4x^2 \cdot 2x}{\left(x^2 + 1\right)^2} = \frac{8x}{\left(x^2 + 1\right)^2}$$

Étudions le signe de la dérivée première afin d'en déduire les variations de f. La seule racine du numérateur est 0, tandis que le dénominateur n'a pas de racine.

x		0	
8 <i>x</i>	1	0	+
$\left(x^2+1\right)^2$	+	+	+
f'(x)	-	0	+
f(x)	K	Min	7

Coordonnées de l'extremum : Min(0, f(0)) = (0,0).

La fonction f • est strictement décroissante dans $]-\infty, 0]$

- atteint un minimum en x = 0
- est strictement croissante dans $[0, +\infty[$

1

4. Dérivée seconde et concavités du graphique de f

$$f''(x) = \left(\frac{8x}{(x^2+1)^2}\right)' = \frac{(8x)' \cdot (x^2+1)^2 - (8x) \cdot \left[(x^2+1)^2\right]'}{(x^2+1)^4} = \frac{8 \cdot (x^2+1)^2 - 8x \cdot 2 \cdot (x^2+1) \cdot 2x}{(x^2+1)^4}$$
$$= \frac{8(x^2+1) \cdot \left[(x^2+1) - 4x^2\right]}{(x^2+1)^4} = \frac{8 \cdot (1-3x^2)}{(x^2+1)^3}$$

Étudions le signe de la dérivée seconde afin d'en déduire les concavités de G_f .

Les racines du numérateur sont $-\sqrt{1/3}$ et $\sqrt{1/3}$.

x		$-\sqrt{1/3}$		$\sqrt{1/3}$	
$8.\left(1-3x^2\right)$	1	0	+	0	-
$\left(x^2+1\right)^3$	+	+	+	+	+
f''(x)	1	0	+	0	-
f(x)		PI_1		PI_2	

Coordonnées des points d'inflexion :

$$PI_1\left(-\sqrt{\frac{1}{3}}, f\left(-\sqrt{\frac{1}{3}}\right)\right) = \left(-\sqrt{\frac{1}{3}}, 1\right) \text{ et } PI_2\left(\sqrt{\frac{1}{3}}, f\left(\sqrt{\frac{1}{3}}\right)\right) = \left(\sqrt{\frac{1}{3}}, 1\right).$$

Le graphique de f

- tourne sa concavité vers le bas dans] ∞ , $-\sqrt{1/3}$]
- admet un point d'inflexion en $x = -\sqrt{1/3}$
- tourne sa concavité vers le haut dans $[-\sqrt{1/3}, \sqrt{1/3}]$
- admet un point d'inflexion en $x = \sqrt{1/3}$
- tourne sa concavité vers le bas dans [$\sqrt{1/3}$, + ∞ [

5. Points supplémentaires

Racine de la fonction: x = 0.

Ordonnée à l'origine : f(0) = 0.

Cela ne nous apprend rien de plus. Calculons d'autre points : $(\pm 1, 2)$ et $(\pm 2, \frac{16}{5}) = (\pm 2, 3.2)$.

6. Représentation graphique

Traçons d'abord l'asymptote et plaçons ensuite tous les points que nous avons trouvés. Ensuite, en lisant simultanément le tableau des variations et celui des concavités, traçons le graphique.

